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1. Review

Definition 1. Let D be an open subset of C and let f : D → C. We say that f is
analytic at z0 ∈ D if f is differentiable at every point in a neighborhood of z0. We
say that f is analytic on D if f is differentiable at every point in D.

Definition 2. Let D be an open subset of C and let f : D → C be analytic. Let
γ : [a, b]→ D be a piecewise smooth path. The path integral of f along γ is∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

Theorem 1. Let D be an open connected set and let f : D → C. Suppose that f
admits a primitive F in D. Let z1, z2 ∈ D. Then for every piecewise smooth path
γ : [a, b]→ D with γ(a) = z1 and γ(b) = z2,∫

γ

f(z) dz = F (z2)− F (z1).

Theorem 2. Let D be an open subset of C. Let f : D → C be analytic on D. Let
α and β be homotopic paths in D. Then∫

α

f(z) dz =

∫
β

f(z) dz.

Corollary 1. Let D be an open, connected, simply connected subset of C. Let f be
analytic on D. Then for every simple closed curve C in D,∫

C

f(z) dz = 0.
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2. Technical Lemmas

To continue our development, we need a bound on the size of an integral.

Lemma 1. Let α : [a, b]→ C be a piecewise smooth path in C. The arclength of α
is

L =

∫ b

a

|α′(t)| dt.

Proof. We partition the domain of α into n pieces of equal size, by setting

∆t =
b− a
n

and ti = a+ i∆t.

An estimate for the length of the arc is

L ≈
n∑
i=1

|α(ti)− α(ti−1| =
n∑
i=1

∣∣∣α(ti)− α(ti−1)

∆t

∣∣∣∆t.
Taking the limit as n→∞ we obtain

L = lim
∆t→0

n∑
i=1

∣∣∣α(ti)− α(ti−1)

∆t

∣∣∣∆t =

∫ b

a

|α′(t)| dt.

�
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Lemma 2. Let α : [a, b]→ C be a piecewise smooth path in C. Then∣∣∣ ∫ b

a

α(t) dt
∣∣∣ ≤ ∫ b

a

|α(t)| dt.

Proof. This is certainly true if the integral on the left hand side is zero, so let us

assume that it is not; thus, set reiθ =
∫ b
a
α(t) dt. Then |

∫ b
a
α(t) dt| = r, and

r =

∫ b

a

e−iθα(t) dt since eiθ is constant

= Re
(∫ b

a

e−iθα(t) dt
)

since the integral is real

=

∫ b

a

Re(e−iθα(t)) dt by the definition of the integral

≤
∫ b

a

|e−iθα(t)| dt since Re(z) ≤ |z| for z ∈ C

=

∫ b

a

|e−iθ||α(t)| dt by a property of modulus

=

∫ b

a

|α(t)| dt since |e−iθ| = 1

�

Lemma 3. Let D be an open subset of C and let f : D → C be continuous. Let
γ : [a, b] → C be a piecewise smooth path in D. Suppose that L is the arclength of
γ, and that suppose f(z) ≤M for all z ∈ D. Then∣∣∣ ∫

γ

f(z) dz
∣∣∣ ≤ML.

Proof. Behold:∣∣∣ ∫
γ

f(z) dz
∣∣∣ ≤ ∫

γ

|f(z)| dz by Lemma 2

=

∫
γ

|f(γ(t))γ′(t)| dt by the definition of path integration

=

∫
γ

|f(γ(t))||γ′(t)| dt by a property of modulus

≤
∫
γ

M |γ′(t)| dt by a property of Riemann integration

= M

∫
γ

|γ′(t)| dt by a property of Riemann integration

= ML by Lemma 1

�
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3. Antiderivatives

Theorem 3. Let D be an open connected subset of C, and let f : D → C be
continuous. The following are equivalent.

(a) The function f admits a primitive in D.
(b) The integral of f between two points in D is path independent.
(c) The integral of f along a closed curve in D is zero.

Proof. We have previously seen why (b) and (c) are equivalent, and that (a)
implies (b). It remains to see why (b) implies (a).

Suppose that integration of f in D is path independent. That is, for any z1, z2 ∈
D and any paths α and β from z1 to z2, we have

∫
α
f(z) dz =

∫
β
f(z) dz. Thus we

write such an integral as
∫ z2
z1
f(z) dz.

Select z0 ∈ D. Note that since D is connected, there is a path from z0 to every
z ∈ D. Define a function

F : D → C by F (z) =

∫ z

z0

f(s) ds;

the value of F is independent of the path we trace from z0 to z.
Let z ∈ D. Since D is open, there is an δ > 0 such that Bδ(z) ⊂ D. Let

h ∈ C with |h| < δ. Then the line segment from z to z + h is contained in D.
Let α : [0, 1] → D given by α(t) = z + ht parameterize this line segment. Then
α′(t) = h, so ∫

α

ds =

∫ 1

0

h dt = h.

Let ε be any positive real number. Since f is continuous, we can select δ above
such that |s− z| < δ implies |f(s)− f(z)| < ε. Then, by Lemma 3,

Now, by path independence,

F (z + h)− F (z) =

∫ z+h

z0

f(s) ds−
∫ z

z0

f(s) ds =

∫ z+h

z

f(s) ds.

Since
∫ z+h
z

ds = h and f(z) is constant with respect to s, we have

f(z) =
f(z)

h

∫ z+h

z

ds =
1

h

∫ z+h

z

f(z) ds,

so that
F (z + h)− F (z)

h
− f(z) =

1

h

∫ z+h

z

(f(s)− f(z)) ds.

Let ε be any positive real number. Since f is continuous, we can select δ above
such that |s− z| < δ implies |f(s)− f(z)|− < ε. Then, by Lemma 3,

F (z + h)− F (z)

h
− f(z) <

1

h
(|h|ε),

so that ∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣ < ε.

Since ε is arbitrary,

lim
h→0

∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣ = 0.

We conclude that F ′(z) = f(z). �
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4. Winding Numbers

The Jordan Curve Theorem indicates that a simple closed curve in a plane par-
titions its complement into two components, an inside and an outside. Considering
that the curve can be very complex, this turns out to be more difficult to prove
than expected. The notions of the homotopy and winding numbers give alternate
formulations of inside and outside.

Proposition 1. Let z0 ∈ C and let C be a circle of radius 1 centered at z0, with
positive orientation. Then ∫

C

dz

z − z0
= 2πi.

Proof. Let γ : [0, 2π]→ C be given by γ(t) = z0 +eit. Then γ is a parameterization
of C, and γ′(t) = ieit, so∫

C

dz

z − z0
=

∫ 2π

0

1

γ(t)− z0
γ′(t) dt =

∫ 2π

0

ieit

(z0 + eit)− z0
dt = i

∫ 2π

0

dt = 2πi.

�

The function f(z) =
1

z − z0
may be used to give information about curves. It is

clear that if we go around the circle C centered at z0 twice, the integral
∫
C
f(z) dz

will be 4πi, and if we go around once in the opposite direction, the integral will
be −2πi; in general, if we go around the circle k times, the integral will be 2kπi.
Moreover, any loop γ which is homotopic to a circular loop which wraps k times
around z0 k will have

∫
γ
f(z) dz = 2kπi.

Definition 3. Let γ : I → C be a loop in C, and let z0 ∈ C. The winding number
(or index) of γ about z0 is

n(γ, z0) =
1

2πi

∫
γ

dz

z − z0
dz.

The domain of analyticity of f(z) =
1

z − z0
is D = C r {z0}. It is intuitively

clear that any simple closed curve in C which does not pass through z0 is homotopic
to a circle in D. If z0 is inside such a circle, the curve is further homotopic to a
circle of radius one centered at z0, in which case the integral of f(z) around the
circle is 2πi. On the other hand, if z0 is not inside the circle, the curve is homotopic
to a constant in D, so the integral is zero. Given a simple closed curve C ⊂ C and
a point z0 ∈ C r C, we have these methods to detect whether the point is inside
the curve.

• z0 is an element of the bounded component of Cr C;
• a (nontangential) ray from z0 to ∞ intersects the curve an odd number of

times;
• C is homotopic to a constant in Cr {z0};
• n(γ, z0) = ±1.
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If C is a simple closed curve, then the winding number tells whether z0 is inside
n(γ, z0) = ±1 or outside n(γ, z0) = 0 the curve. However, if C is the image of any
loop, n(γ, z0) tells how many times C wraps around z0. The situation regarding
“inside” or “outside” is less clear if the curve is not simple. Indeed, we could define
z0 to be outside of a closed curve if the curve is homotopic to a constant in Cr{z0}.
However, it turns out that there exist loops γ such that n(γ, z0) = 0, and yet γ is
not homotopic to a constant in Cr {z0, z1}, where z1 is some other point.

5. Rational Functions

To review, we note that one can compute the next proposition directly from the
definition.

Result 1. (Logarithms) Let C be a positively oriented circle centered at z0 ∈ C.
Then ∫

C

1

z − z0
dz = 2πi.

The following extension of this fact follows from the fact that f(z) =
1

(z − z0)n

has an antiderivative in its domain, if n > 1.

Result 2. (Power functions) Let C be a positively oriented circle centered at
z0 ∈ C, and let k ∈ Z. Then∫

C

(z − z0)k dz =

{
2πi if k = −1 ;

0 if k 6= −1 .

In particular,

Result 3. (Polynomials) Let f : C→ C be a polynomial, and let C be any closed
curve in C. Then ∫

C

f(z) dz = 0.

Combine these with homotopy, winding numbers, and the principle of partial
fraction decomposition to obtain the following.

Result 4. (Rational Functions) Let f(z) be a rational function with poles
p1, p2, . . . , pn of order o1, o2, . . . , on, respectively. Using partial fractions, we may
write

f(z) = g(z) +

n∑
j=1

oj∑
k=1

Ajk
(z − zj)k

,

where g(z) is a polynomial and Ajk ∈ C. Let C be an closed curve in C. Then∫
C

f(z) dz = 2πi

n∑
j=1

Aj1n(C, zj),

where

n(C, zj) =
1

2πi

∫
C

1

z − zj
dz

is the winding number of C about zj .
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6. Cauchy’s Integral Formula

The technique used to show that having an antiderivative is equivalent to path
independence may be modified to provide the following striking integration formula.
We begin with a lemma, which really contains the main argument.

Theorem 4. (Cauchy’s Integral Formula) Let f be analytic on and inside a
simple closed curve C with positive orientation. Let z0 be inside of C. Then

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz.

Proof. Because of path independence within C, we may assume that C is a circle
of radius ρ centered at z0. Thus the length of C is L = 2πρ.

Let ε be any positive real number and let M =
ε

L
. Since f is differentiable at z0,

we can select δ such that |z − z0| < δ implies
∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣ < M . Then,

by Lemma 3, ∣∣∣ ∫
C

f(z)− f(z0)

z − z0
− f ′(z0) dz

∣∣∣ ≤ LM = ε.

Since ε is arbitrary, we see that∫
C

f(z)− f(z0)

z − z0
− f ′(z0) dz = 0,

so ∫
C

f(z)− f(z0)

z − z0
dz =

∫
C

f ′(z0) dz = 0,

since f ′ has a primitive inside C. This shows that∫
C

f(z)

z − z0
dz =

∫
C

f(z0)

z − z0
dz = f(z0)

∫
C

dz

z − z0
=
f(z0)

2πi
.

�

Theorem 5. (Cauchy’s Integral Extension) Let f be analytic on and inside a
simple closed curve C with positive orientation. Let z0 be inside of C. Let n be a
positive integer. Then the nth derivative of f at z0 exists, and

f (n)(z0) =
n!

2πi

∫
C

f(z)

z − z0
dz.

Reason. Under the circumstances of this theorem, for reasons we do not investigate,
it is possible to “differentiate under the integral sign”. That is, we apply the

differentiation operator
d

dz
to each side of Cauchy’s Integral Formula and obtain

f ′(z0) =
d

dz

1

2πi

∫
C

f(z)

z − z0
dz

=
1

2πi

∫
C

d

dz

[ f(z)

z − z0

]
dz

=
1

2πi

∫
C

f(z)

(z − z0)2
dz

Consider this the base case; the form for n > 1 follows similarly using induction. �
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7. Morera’s Theorem

Morera’s Theorem can be considered to be a converse of the Cauchy-Goursat
theorem.

Theorem 6. (Morera’s Theorem) Let D ⊂ C be an open set and let f : D → C
be continuous. Suppose that ∫

C

f(z) dz = 0

for every simple closed contour C in D. Then f is analytic on D.

Proof. This follows from Theorem 3 and Theorem 5 as follows.
Since the integral around every closed curve is zero, we know that integration of

f in D is independent of path. Thus we can construct an antiderivative F for f in
D. Now F is differentiable at every point in D, since F ′(z) = f(z) for all z ∈ D.
Thus F is analytic in D, and now Cauchy’s Integral Extension implies that F ′ = f
is also differentiable. �

8. Liouville’s Theorem

Lemma 4. (Cauchy’s Estimate) Let f be analytic within and on a the circle C
of radius R about z0 ∈ C. Let M be an upper bound for the modulus of f on C.
Then

|f (n)(z0)| ≤ n!M

2πRn
.

Proof. By Cauchy’s Integral Extension,

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz.

Taking the modulus of both sides gives

|f (n)(z0)| =
∣∣∣ n!

2πi

∫
C

f(z)

(z − z0)n+1
dz
∣∣∣ taking the modulus of both sides

≤ n!

2π

∫
C

|f(z)|
|(z − z0)n+1|

dz by Lemma 2

=
n!

2πRn+1

∫
C

|f(z)| dz since |z − z0| = R on C

≤ n!

2πRn+1
(2πR)M by Lemma 1

=
n!M

2πRn

�

Theorem 7. (Liouville’s Theorem) A bounded entire function is constant.

Proof. Let f : C → C be a bounded entire function, say |f(z)| ≤ M for all z ∈ C.
Let z0 ∈ C, and let R be the radius of a circle about z0. With n = 1, Lemma 4
says that

f ′(z0) ≤ M

2πRn

for all R > 0. This implies that f ′(z0) = 0. Since z0 was arbitrary, f ′(z) = 0 for
all z ∈ C. Therefore, f is constant. �
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9. Fundamental Theorem of Algebra

Theorem 8. (Fundamental Theorem of Algebra) Let f : C → C be a non-
constant polynomial function. Then there exists z ∈ C such that f(z) = 0.

Proof. We assume that f is a nonconstant polynomial with no zeros, and arrive at
a contraction For simplicity and without loss of generality, assume f is monic.

Since f is nonconstant, f becomes unbounded in every direction as z goes to
infinity. To see this, write f(z) = zn + an−1z

n−1 + · · ·+ a1z + a0. Then

lim
z→∞

f(z) = lim
z→∞

zn(1 +
an−1

z
+ · · ·+ a1

zn−1
+
a0

zn
) = lim

z→∞
zn =∞.

Consider the function g(z) =
1

f(z)
. Since f has no zeros, g is defined and analytic

in the entire complex plane. Since limz→∞ f(z) =∞, we see that limz→∞ g(z) = 0.
Thus there exists R > 0 such that, for |z| > R, we have |f(z)| < 1. Since modulus
is a continuous function, f attains a maximum modulus on the closed disk given
by |z| ≤ R. Thus f is bounded, and so by Liouville’s Theorem, f is constant,
contradicting our hypothesis. �

10. Maximum Modulus Theorem

Lemma 5. Let f : [a, b]→ R be continuous. Let

M =
1

b− a

∫ b

a

f(t) dt.

Suppose that f(t) ≤M for all t ∈ [a, b]. Then f(t) = M for all t ∈ [a, b].

Proof. Suppose not. Then f(t0) 6= M for some t0 ∈ [a, b]. Thus f(t0) < M . Let

ε =
M − f(t0)

2
. Since f is continuous, there exists δ > 0 such that |t − t0| < δ

implies |f(t) − f(t0)| < ε. Let c = t0 − δ and d = t0 + δ, so that for t ∈ (c, d), we

have t < M − ε. Then
∫ d
c
f(t) dt ≤ (d− c)(M − ε).

Since |f(t)| ≤M for all t ∈ [a, b], we have
∫ c
a
f(t) dt ≤ (c−a)M , and

∫ b
d
f(t) dt ≤

(b− d)M . So

(b− a)M =

∫ b

a

f(t) dt

=

∫ c

a

f(t) dt+

∫ d

c

f(t) dt+

∫ b

d

f(t) dt

≤ (c− a)M + (d− c)(M − ε) + (b− d)M

< (b− a)M

This contradiction proves the lemma. �
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Lemma 6. Let f : [a, b]→ C be continuous. Let

µ =
1

b− a

∫ b

a

f(t) dt.

Suppose that |f(t)| ≤ |µ| for all t ∈ [a, b]. Then f(t) = µ for all t ∈ [a, b].

Proof. Dividing my µ gives

1 =
1

b− a

∫ b

a

f(t)

µ
dt.

Let g(t) = Re(f(t)/µ) and h(t) = Im(f(t)/µ), so that
f(t)

µ
= g(t) + ih(t). Then

1 =
1

b− a

∫ b

a

g(t) dt+
i

b− a

∫ b

a

h(t) dt.

Since the left hand side is real, the imaginary part of the right hand side is zero, so

1 =
1

b− a

∫ b

a

g(t) dt.

Taking the modulus of both sides gives

1 =
1

b− a

∣∣∣ ∫ b

a

g(t) dt
∣∣∣ ≤ 1

b− a

∫ b

a

|g(t)| dt.

But since |f(t)| ≤ µ for all t ∈ [a, b],

|g(t)| = |f(t)/µ| ≤ 1 for all t ∈ [a, b].

Thus Lemma 5 implies that g(t) = 1 for all t ∈ [a, b]. Since |f(t)/µ| = |g(t)+ih(t)| ≤

1, we must have h(t) = 0 for all t ∈ [a, b]. Thus
f(t)

µ
= g(t) = 1, so f(t) = µ, for

all t ∈ [a, b]. �
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Lemma 7. Let z0 ∈ C and let D be an open disk centered at z0. Let f be a function
which is analytic on D, such that |f(z)| < |f(z0)| for all z ∈ D. Then f(z) = f(z0)
for all z ∈ D.

Proof. Let r be a positive real number which is less than the radius of D, and let
γ : [0, 2π] → D be given by γ(t) = z0 + reit. We apply Cauchy’s Integral Formula
to see that

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz

=
1

2πi

∫
γ

f(z)

z − z0
dz

=
1

2πi

∫ 2π

0

f(γ(t))

γ(t)− z0
γ′(t) dt

=
1

2πi

∫ 2π

0

f(z0 + reit)

z0 + reit
(rieit) dt

=
1

2π

∫ 2π

0

f(z0 + reit) dt.

By hypothesis, |f(z0 + reit)| ≤ |f(z0)| for all t ∈ [0, 2π], so by Lemma 6, we have
f(z) = f(z0) for all z in the disk about z0 of radius r. Since may be r is arbitrarily
close to the radius of D, this implies that f(z) = f(z0) for all z ∈ D. �

Theorem 9. (Maximum Modulus Theorem) Let D be an open connected sub-
set of C and let f : D → C be analytic. If there exists z0 ∈ C such that f(z) ≤ f(z0)
for every z ∈ D, then f is constant.

Proof. For w ∈ C and r ∈ R, let

Br(w) = {z ∈ C | |z − w| < δ

denote the open disk of radius r about w.
Let w ∈ D. We show that f(w) = f(z0).
Since D is connected, there exists a contour C from z0 to w. Let r > 0 be so

small that a disk of radius r about each point on C is contained in D. We can
pick a finite number of points z0, z1, . . . , zn = w on C such that |zi − zi−1| < r for
i = 1, . . . , n. By Lemma 7, f(z) = f(z0) for all z ∈ Br(z0), and since z1 ∈ Br(z0),
f(z1) = f(z0). Since Br(z1) ⊂ D, we still have f(z) ≤ f(z1) for all z ∈ Br(z1),
so f is constant on Br(z1). Similarly, z2 ∈ Br(z1), so f(z2) = f(z1), so f has a
maximum modulus at z2. Continuing in this way, by induction, we see that

f(z0) = f(z1) = · · · = f(zn) = f(w).

Thus f is constant on all of D. �

Corollary 2. Let D be an open connected subset of C and let f : D → C be analytic
and nonvanishing. Suppose that f(z) 6= 0 for all z ∈ D. If there exists z0 ∈ C such
that f(z) ≥ f(z0) for every z ∈ D, then f is constant.

Proof. Since f is nonvanishing, f(z) 6= 0 for all z ∈ D, so
1

f(z)
is analytic in D.

Then
1

f(z0)
has a maximal modulus in D, which implies that

1

f(z)
is constant, and

so is f(z). �
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